Exact matches only
Search in title
Search in content
Search in posts
Search in pages
Filter by Categories
AI
autonomous bikes
brain
brain anatomy
brain computer interface
brain diseases
brain Functions
brain implant
brain research
brain treatment
china
conferences and events
detection test
eeg headsets
lab
mind control
paralysis
quantum computing
Singularity
what is bci
{ "homeurl": "https://brainpedia.org/", "resultstype": "vertical", "resultsposition": "hover", "itemscount": 5, "imagewidth": 70, "imageheight": 70, "resultitemheight": "70px", "showauthor": 0, "showdate": 0, "showdescription": 1, "charcount": 2, "noresultstext": "No results!", "didyoumeantext": "Did you mean:", "defaultImage": "http://blogs.emotikone.com/wp-content/plugins/ajax-search-lite/img/default.jpg", "highlight": 0, "highlightwholewords": 0, "scrollToResults": 0, "resultareaclickable": 1, "defaultsearchtext": "Search about Brain an BCI", "autocomplete": { "enabled" : 0, "lang" : "en" }, "triggerontype": 1, "triggeronclick": 1, "redirectonclick": 0, "trigger_on_facet_change": 0, "settingsimagepos": "right", "hresultanimation": "fx-none", "vresultanimation": "fx-none", "hresulthidedesc": "1", "prescontainerheight": "400px", "pshowsubtitle": "0", "pshowdesc": "1", "closeOnDocClick": 1, "iifNoImage": "description", "iiRows": 2, "iitemsWidth": 200, "iitemsHeight": 200, "iishowOverlay": 1, "iiblurOverlay": 1, "iihideContent": 1, "iianimation": "1", "analytics": 1, "analyticsString": "ajax_search-{asl_term}", "redirectonclick": 0, "redirectClickTo": "results_page", "redirect_on_enter": 1, "redirectEnterTo": "results_page", "overridewpdefault": "0" }
brain computer interface

Paralyzed man walks again using his own brain power

Paralysed man wals using BCI

This is the first time that a person with complete paralysis in both legs resulting from a spinal cord injury was able to walk without employing the use of manually controlled robotic limbs.

Using an electroencephalogram (EEG) based system that takes electrical signals from the participant’s brain and sends them down to electrodes placed around his knees, the patient walked along a 12-foot course.

“Even after years of paralysis the brain can still generate robust brain waves that can be harnessed to enable basic walking,” lead researcher Dr. An Do explained in a statement. “We showed that you can restore intuitive, brain-controlled walking after a complete spinal cord injury. This noninvasive system for leg muscle stimulation is a promising method and is an advance of our current brain-controlled systems that use virtual reality or a robotic exoskeleton”

Getting the patient to walk was a rigorous process that took place over the course of 19 weeks, the study authors report. He first underwent mental training to reactivate the brain areas responsible for controlling movements involved in walking. The researchers placed an EEG cap on his head to read his brainwaves, and he trained to control an avatar in a virtual reality setting.

“Once we’ve confirmed the usability of this noninvasive system, we can look into invasive means, such as brain implants. We hope that an implant could achieve an even greater level of prosthesis control because brain waves are recorded with higher quality,” lead study author Dr. Zoran Nenadic said. “In addition, such an implant could deliver sensation back to the brain, enabling the user to feel their legs.”

ALSO READ :   Introduction to Electroencephalogram (EEG)

 

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Most Popular

To Top